多模光纤束环形排列跳线:SMA到SMA
特性
1米或者2米长的含7或者19根纤芯的多模光纤束
两端都有SMA 905连接头
有高羟基和低羟基两种类型
没有破损的光纤
可以定制
Thorlabs的高质量光纤束产品线包含7根或者19根高规格的光纤,这些光纤以圆形排列分布固定在SMA905连接器中。该光纤束有低羟基和高羟基光纤版本。19根光纤的光纤束中所用光纤的纤芯为Ø200
μm,该光纤束的孔径Ø1.3 mm。相比之下,7根光纤的光纤束中所用光纤的纤芯为Ø550
μm,而该光纤束的孔径为Ø2.0 mm。Ø1.3 mm的光纤束比Ø2.0光纤束的弯曲半径小。而较大的直径使得Ø2.0 mm光纤束可以通过更多的光。这些光纤束主要是设计用于耦合到光源,因此这些光纤的每个端口的取向并不相同,而且不同型号的光纤在连接器中的相应位置可能存在差异。为了增强耐用性,这些跳线采用了不绣钢保护套管(FT05SS)。
每条跳线都带有两个罩在终端的保护帽,防止灰尘落入或其它损伤。另外,我们还出售CAPM橡胶光纤保护帽和SMA端口的CAPMM金属螺纹光纤保护帽。
我们也接受光纤束定制,如果您需要,我们也提供定制分叉光纤束,可将一个共用连接件分离成两个或者多个连接件。请联系Thorlabs的技术支持techsupport-cn@thorlabs.com。
典型应用
光谱
荧光显微镜辐射光收集
粒子探测扫描
色变学
照明
Item # Prefix | BF13LSMA | BF13HSMA | BF20LSMA | BF20HSMA |
Aperture | Ø1.3 mm | Ø2.0 mm | ||
Wavelength Range | 400 - 2200 nm | 250 - 1200 nm | 400 - 2200 nm | 250 - 1200 nm |
NAa | 0.22 | |||
# of Fibers | 19 | 7 | ||
Core Diameter | 200 ± 8 µm | 550 ± 19 µm | ||
Cladding Diameter | 240 ± 5 µm | 600 ± 10 µm | ||
Effective Core Diameter | 1126 µm | 1750 µm | ||
Fiber | FG200LCC | FG200UCC | FG550LEC | FG550UEC |
Fiber Attenuation Plot | ||||
Short-Term Bend Radius | 6.5 cm | 10 cm | ||
Long-Term Bend Radius | 13 cm | 20 cm | ||
Usable Area | 46% | 56% | ||
Length Tolerance | +0.075 m / -0 m | |||
Maximum Temperature | 125 °C |
光纤束的数值孔径与每根光纤的数值孔径相同。
定制光纤束
Thorlabs乐于给您供应定制的带随机或确定光纤配置的直光纤束和扇出光纤束。有下表列出了我们当前能生产的一些光纤束。我们正在扩展生产能力,所以如果此处没有您所要求的光纤束也可以联系我们。
一些定制光纤束的要求将超出我们的一般的生产工艺技术范围。所以我们不能保证能够制造出的光纤束配置符合您的特殊应用要求。但是,我们的工程师也非常乐于与您一起确定Thorlabs是否能够生产符合您需要的光纤束。如需报价,请提供给我们您的光纤束配置图。
样品光纤束接头配置
定制1转4束扇出型光缆
定制带SMA905接头的石英光纤束
Custom | |||
Bundle Configuration | Straighta | Fan Out (2 or More Legs)a,b | |
Fiber Types | Single Mode | Standard (320 to 2100 nm), Ultra-High NA Dispersion Compensating (1500 to 1625 nm), | |
Multimode | 0.10 NA Step Index (280 to 750 nm), 0.22 NA 0.39 NA Step Index (300 to 2200 nm), Multimode ZrF4 (285 nm to 4.5 µm) | ||
Tubing Optionsc | Thorlabs' Stock Furcation Tubing, | ||
Connectors | SMA905 (Ø2 mm Max Cored), | ||
Length Tolerancee | ±0.14 m | ||
Active Area Geometryf | Round or Linear | ||
Angle Polishing | On Special Request. Available for up |
a.
在一束20根光纤中,一般多有一根是暗纤,即一束中95%的光纤都是完好的。对于每支中不止一根光纤的光纤束,有5-10%的光纤是暗纤。
b.
这些光纤束不适合要求均匀功率分布的应用。
c.
套管的选择会被光纤类型、光纤数量和长度所限制。一般来说,在定制光纤束中会使用不止一种套管,尤其是分叉光纤束。
d.
它代表公共端光纤的大纤芯直径。分离端光纤的纤芯直径算入了公共端纤芯直径。
e.
光纤束的长度公差≤2 m。请联系techsupport-cn@thorlabs.com讨论更长光纤束的公差。
f.
我们不能保证在分叉光纤束公共端处光纤或几何结构之间的距离。
我们的光缆工程师可以协助设计符合您应用的光纤束。对于您的定制光纤束要求,请联系techsupport-cn@thorlabs.com。请提供您定制光纤束的图纸,我们可以更快地给您报价。
损伤阀值
激光诱导的光纤损伤
以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的大功率始终受到这些损伤机制的小值的限制。
虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的绝损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的大功率水平以下操作光纤元件;如果有元件并未指定大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。关于特定应用中光纤功率适用能力的深入讨论,请联系技术支持techsupport-cn@thorlabs.com。
Quick Links |
Damage at the Air / Glass Interface |
Intrinsic Damage Threshold |
Preparation and Handling of Optical Fibers |
空气-玻璃界面的损伤
空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成**性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。
损伤的光纤端面
未损伤的光纤端面
裸纤端面的损伤机制
光纤端面的损伤机制可以建模为大光学元件,紫外熔融石英基底的工业标准损伤阈值适用于基于石英的光纤(参考右表)。但是与大光学元件不同,与光纤空气/璃界面相关的表面积和光束直径都非常小,耦合单模(SM)光纤时尤其如此,因此,对于给定的功率密度,入射到光束直径较小的光纤的功率需要比较低。
右表列出了两种光功率密度阈值:一种理论损伤阈值,一种"实际安全水平"。一般而言,理论损伤阈值代表在光纤端面和耦合条件非常好的情况下,可以入射到光纤端面且没有损伤风险的大功率密度估算值。而"实际安全水平"功率密度代表光纤损伤的低风险。超过实际安全水平操作光纤或元件也是有可以的,但用户必须遵守恰当的适用性说明,并在使用前在低功率下验证性能。
计算单模光纤和多模光纤的有效面积单模光纤的有效面积是通过模场直径(MFD)定义的,它是光通过光纤的横截面积,包括纤芯以及部分包层。耦合到单模光纤时,入射光束的直径必须匹配光纤的MFD,才能达到良好的耦合效率。
例如,SM400单模光纤在400 nm下工作的模场直径(MFD)大约是Ø3 µm,而SMF-28 Ultra单模光纤在1550 nm下工作的MFD为Ø10.5 µm。则两种光纤的有效面积可以根据下面来计算:
SM400 Fiber:Area= Pi x (MFD/2)2
= Pi x (1.5µm)2
= 7.07 µm2= 7.07 x 10-8cm2
SMF-28 Ultra Fiber:
Area = Pi x (MFD/2)2
= Pi x (5.25 µm)2= 86.6 µm2= 8.66 x 10-7cm2
为了估算光纤端面适用的功率水平,将功率密度乘以有效面积。请注意,该计算假设的是光束具有均匀的强度分布,但其实,单模光纤中的大多数激光束都是高斯形状,使得光束中心的密度比边缘处更高,因此,这些计算值将略高于损伤阈值或实际安全水平对应的功率。假设使用连续光源,通过估算的功率密度,就可以确定对应的功率水平:
SM400 Fiber:
7.07 x 10-8cm2x 1MW/cm2= 7.1 x10-8MW =71
mW
(理论损伤阈值)
7.07 x 10-8cm2x 250 kW/cm2= 1.8 x10-5kW = 18
mW
(实际安全水平)
SMF-28 Ultra
Fiber:
8.66 x 10-7cm2x 1MW/cm2= 8.7 x10-7MW =870mW
(理论损伤阈值)
8.66 x 10-7cm2x 250 kW/cm2= 2.1 x10-4kW =210
mW
(实际安全水平)
多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。
Estimated Optical Power Densities on Air / Glass | ||
Type | Theoretical Damage | Practical Safe |
CW(Average Power) | ~1 MW/cm2 | ~250 kW/cm2 |
10 ns Pulsed(Peak Power) | ~5 GW/cm2 | ~1 GW/cm2 |
所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。
这是可以入射到光纤端面且没有损伤风险的大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。
这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。
插芯/接头终端相关的损伤机制
有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。
与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。
为了大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。
曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。大功率适用性受到所有相关损伤机制的低功率水平限制(由实线表示)。
确定具有多种损伤机制的功率适用性
光纤跳线或组件可能受到多种途径的损伤(比如,光纤跳线),而光纤适用的大功率始终受到与该光纤组件相关的低损伤阈值的限制。
例如,右边曲线图展现了由于光纤端面损伤和光学接头造成的损伤而导致单模光纤跳线功率适用性受到限制的估算值。有终端的光纤在给定波长下适用的总功率受到在任一给定波长下,两种限制之中的较小值限制(由实线表示)。在488 nm左右工作的单模光纤主要受到光纤端面损伤的限制(蓝色实线),而在1550
nm下工作的光纤受到接头造成的损伤的限制(红色实线)。
对于多模光纤,有效模场由纤芯直径确定,一般要远大于SM光纤的有效模场。因此,其光纤端面上的功率密度更低,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到光纤中(图中未显示)。而插芯/接头终端的损伤限制保持不变,这样,多模光纤的大适用功率就会受到插芯和接头终端的限制。
请注意,曲线上的值只是在合理的操作和对准步骤几乎不可能造成损伤的情况下粗略估算的功率水平值。值得注意的是,光纤经常在超过上述功率水平的条件下使用。不过,这样的应用一般需要专业用户,并在使用之前以较低的功率进行测试,尽量降低损伤风险。但即使如此,如果在较高的功率水平下使用,则这些光纤元件应该被看作实验室消耗品。
光纤内的损伤阈值
除了空气玻璃界面的损伤机制外,光纤本身的损伤机制也会限制光纤使用的功率水平。这些限制会影响所有的光纤组件,因为它们存在于光纤本身。光纤内的两种损伤包括弯曲损耗和光暗化损伤。
弯曲损耗
光在纤芯内传播入射到纤芯包层界面的角度大于临界角会使其无法全反射,光在某个区域就会射出光纤,这时候就会产生弯曲损耗。射出光纤的光一般功率密度较高,会烧坏光纤涂覆层和周围的松套管。
有一种叫做双包层的特种光纤,允许光纤包层(第二层)也和纤芯一样用作波导,从而降低弯折损伤的风险。通过使包层/涂覆层界面的临界角高于纤芯/包层界面的临界角,射出纤芯的光就会被限制在包层内。这些光会在几厘米或者几米的距离而不是光纤内的某个局部点漏出,从而大限度地降低损伤。Thorlabs生产并销售0.22 NA双包层多模光纤,它们能将适用功率提升百万瓦的范围。
光暗化
光纤内的第二种损伤机制称为光暗化或负感现象,一般发生在紫外或短波长可见光,尤其是掺锗纤芯的光纤。在这些波长下工作的光纤随着曝光时间增加,衰减也会增加。引起光暗化的原因大部分未可知,但可以采取一些列措施来缓解。例如,研究发现,羟基离子(OH)含量非常低的光纤可以抵抗光暗化,其它掺杂物比如氟,也能减少光暗化。
即使采取了上述措施,所有光纤在用于紫外光或短波长光时还是会有光暗化产生,因此用于这些波长下的光纤应该被看成消耗品。
制备和处理光纤
通用清洁和操作指南
建议将这些通用清洁和操作指南用于所有的光纤产品。而对于具体的产品,用户还是应该根据辅助文献或手册中给出的具体指南操作。只有遵守了所有恰当的清洁和操作步骤,损伤阈值的计算才会适用。
安装或集成光纤(有终端的光纤或裸纤)前应该关掉所有光源,以避免聚焦的光束入射在接头或光纤的脆弱部分而造成损伤。
光纤适用的功率直接与光纤/接头端面的质量相关。将光纤连接到光学系统前,一定要检查光纤的末端。端面应该是干净的,没有污垢和其它可能导致耦合光散射的污染物。另外,如果是裸纤,使用前应该剪切,用户应该检查光纤末端,确保切面质量良好。
如果将光纤熔接到光学系统,用户首先应该在低功率下验证熔接的质量良好,然后在高功率下使用。熔接质量差,会增加光在熔接界面的散射,从而成为光纤损伤的来源。
对准系统和优化耦合时,用户应该使用低功率;这样可以大程度地减少光纤其他部分(非纤芯)的曝光。如果高功率光束聚焦在包层、涂覆层或接头,有可能产生散射光造成的损伤。
高功率下使用光纤的注意事项
一般而言,光纤和光纤元件应该要在安全功率水平限制之内工作,但在理想的条件下(**的光学对准和非常干净的光纤端面),光纤元件适用的功率可能会增大。用户首先必须在他们的系统内验证光纤的性能和稳定性,然后再提高输入或输出功率,遵守所有所需的安全和操作指导。以下事项是一些有用的建议,有助于考虑在光纤或组件中增大光学功率。
要防止光纤损伤光耦合进光纤的对准步骤也是重要的。在对准过程中,在取得佳耦合前,光很容易就聚焦到光纤某部位而不是纤芯。如果高功率光束聚焦在包层或光纤其它部位时,会发生散射引起损伤
使用光纤熔接机将光纤组件熔接到系统中,可以增大适用的功率,因为它可以大程度地减少空气/光纤界面损伤的可能性。用户应该遵守所有恰当的指导来制备,并进行高质量的光纤熔接。熔接质量差可能导致散射,或在熔接界面局部形成高热区域,从而损伤光纤。
连接光纤或组件之后,应该在低功率下使用光源测试并对准系统。然后将系统功率缓慢增加到所希望的输出功率,同时周期性地验证所有组件对准良好,耦合效率相对光学耦合功率没有变化。
由于剧烈弯曲光纤造成的弯曲损耗可能使光从受到应力的区域漏出。在高功率下工作时,大量的光从很小的区域(受到应力的区域)逃出,从而在局部形成产生高热量,进而损伤光纤。请在操作过程中不要破坏或突然弯曲光纤,以尽可能地减少弯曲损耗。
用户应该针对给定的应用选择合适的光纤。例如,大模场光纤可以良好地代替标准的单模光纤在高功率应用中使用,因为前者可以提供更佳的光束质量,更大的MFD,且可以降低空气/光纤界面的功率密度。
阶跃折射率石英单模光纤一般不用于紫外光或高峰值功率脉冲应用,因为这些应用与高空间功率密度相关。
光纤束:SMA到SMA
产品型号 | 公英制通用 |
BF13LSMA01 | 环形光纤束,直径1.3毫米,低羟基,SMA至SMA,1米长 |
BF13LSMA02 | 环形光纤束,直径1.3毫米,低羟基,SMA至SMA,2米长 |
BF13HSMA01 | 环形光纤束,直径1.3毫米,高羟基,SMA至SMA,1米长 |
BF13HSMA02 | 环形光纤束,直径1.3毫米,高羟基,SMA至SMA,2米长 |
BF20LSMA01 | 环形光纤束,直径2.0毫米,低羟基,SMA至SMA,1米长 |
BF20LSMA02 | 环形光纤束,直径2.0毫米,低羟基,SMA至SMA,2米长 |
BF20HSMA01 | 环形光纤束,直径2.0毫米,高羟基,SMA至SMA,1米长 |
BF20HSMA02 | 环形光纤束,直径2.0毫米,高羟基,SMA至SMA,2米长 |
SMA光纤束转接件,用于OSL1光纤光源
OSL1-SMA转接件可将带SMA接头的多模光纤束用作我们上一代产品OSL1光纤光源的输出。我们的带SMA接头的光纤束提供的工作波长范围比OSL1附带的光纤束和OSL2YFB光纤束(上面有售)的工作波长范围更宽,而且可以选择更长的长度。
OSL1-SMA转接件可以插入OSL1光源的前面板,并通过一个手拧螺丝固定。它兼容SMA905和SMA906光纤接头。
注意:OSL1-SMA不兼容我们当前的OSL2光源。
SMA光纤束连接在OSL1-SMA转接件上
产品型号 | 公英制通用 |
OSL1-SMA | SMA光纤束转接件,用于OSL1光纤光源 |